

An update on flax seed and meal for use in dairy cow diets

AnSc 494.6 Undergraduate Thesis

Presenter: Maddy Lazurko

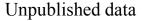
Eighth Annual Dairy Info Day January 24, 2019

Outline

- * Why flaxseed?
- General nutrients
- Special bioactive compounds
- Animal health benefits
- Transition cow management
- Value added products
- * Adding flaxseed meal to the dairy cow diet
- * Resources for further information

Why Flaxseed?

- * Readily available, highly nutritious crop grown in Saskatchewan
- * Contains numerous bioactive compounds that can improve
 - * Overall animal health
 - Reproductive performance
 - Immune function
- Transition cow management
- Opportunity for value added products



Palatable and easy to incorporate into diet

General Nutritional Properties of Flaxseed meal

Dry matter	90.82
Crude protein, % DM	40.03
ADF, % DM	10.74
NDF, % DM	18.33
Starch, % DM	0.65
Fat, % DM	10.44
TDN , %	87.08

Amino Acids

Essential Amino Acids in Flaxseed Meal

% of CP	Flaxseed meal ¹	Canola meal ²	Soybean meal ³
Methionine	1.84	2.06	1.40
Lysine	3.98	5.56	6.10
Arginine	9.08	5.78	7.40
Histidine	2.09	3.11	2.60
Isoleucine	4.31	4.33	4.60
Leucine	5.72	2.54	7.50
Phenylalanine	4.60	3.83	5.00
Threonine	3.54	4.39	3.90
Tryptophan	1.29	1.33	1.30
Valine	5.08	5.47	4.80
Total CP, % DM	35.68	36.00	51.80

¹ Unpublished data

² Canola Council – Canola Guide

³ Feedipedia – Soybean Meal

Bioactive Compounds <u>Omega- 3 Fatty Acids</u>

Flaxseed is one of the richest sources of the essential fatty acid **alpha-linolenic acid (ALA)** (C18:3n-3):

* Precursor to DHA (22:6n-3) and EPA (20:5n-3)

Health Benefits:

- Cardioprotective and anti-inflammatory effects
- Positive impacts on central nervous system (development and function)
- Prevention and treatment of disorders (ie. attention deficit disorder) and autoimmune diseases (ie. Lupus)
- * Anti-cancer effects (act as cytotoxin to initiate cell death in cancer cells)

Bioactive Compounds <u>Lignans</u>

- Class of phytoestrogens (estrogen-like compounds produced in plants)
- * Secoisolariciresinol diglucoside (SDG)
 - * Flaxseed is the richest source of SDG (1-26mg/g)
 - Converted to mammalian lignans enterodiol and enterolactone in the human colon
 - * Antioxidant
 - Reduce atherosclerosis (both humans and other mammals)
 - Anti-cancer, chemopreventive, chemotherapeutic effects (anti-proliferative effects seen in lung, breast, colon, ovarian, and prostate cancers)

Morris 2007; Herchi et al. 2014; Shim et al. 2014; Chikara et al. 2017

Animal Health

Reproduction

- Earlier post-partum estrus due to enhanced uterine involution and cyclic actively
 - Uterine involution 100% complete within 30 days for cows fed flax, compared to 61.5% for control group
 - Increased first service conception rate (flax fed: 87.5% vs control group: 50%)
 - * Reduced time to rebreeding

Immune status

- Flaxseed supplemented to steers resulted in lower rectal temperatures and higher blood haptoglobin than those fed tallow
 - Indicative of an effect on immune response

Transition Cow Management

Flaxseed of great interest due to:

- Immune support
 - Reduced inflammatory response
- * Increased energy balance
 - Increased DM intake postpartum
- Reproductive support
 - Ovarian activity resumes sooner

Value - Added Products

- When ingested by the cow, bioactive compounds found in flaxseed transfer into the milk
- There is room in the human food market for milk enriched in these compounds (ie. Omega-3 or lignan enriched)
- Further research is being conducted to determine the extent at which these bioactive compounds accumulate in the milk

Addition of Flaxseed Meal to the Diet

- * Recommended inclusion rate: up to 2 kg DM/cow/day
 - * High PUFA in the diet can cause milk fat depression
 - * At this inclusion rate milk fat depression is not expected
- * Excellent source of:
 - * Protein
 - * Fat
 - * Structural and non structural carbohydrates
 - * Minerals

Example Flaxseed Meal Diet

Feedstuff	As fed kg	DM kg	%DMI
Alfalfa Hay	6.11	5.50	20.75
Barley Silage	28.84	7.81	29.46
Energy Booster 100®	0.40	0.39	1.46
Ground Barley	6.09	5.36	20.22
Ground Corn	2.52	2.22	8.38
Canola Meal	1.07	0.96	3.64
Soybean meal	1.18	1.06	4.00
Flaxseed meal	2.19	2.00	7.55
Corn gluten meal (60%)	0.27	0.25	0.94
U of S Premix	0.34	0.34	1.28
Molasses Cane	0.21	0.15	0.57
Biotin	0.01	0.01	0.04
R-Choline	0.06	0.06	0.22
PotMagSulfate	0.02	0.02	0.09
Sodium Bicarbonate	0.15	0.15	0.55
Limestone Ground	0.16	0.15	0.58
Niacin 6 g	0.01	0.01	0.02
Santoquin	0.003	0.003	0.01
Salt White	0.06	0.06	0.24
Water	5.00	0.01	0.02

Formulated for: Lactation: 3rd Days in milk: 120 Milk production: 40 kg/day Milk fat: 3.88%

Diet specs:

As fed total: 54.7 kg Total dry matter intake: 26.5 kg Metabolizable energy: 106.8% Metabolizable protein: 101.0%

Example Milled Flaxseed Diet

Feedstuff	As fed kg	DM kg	%DMI
Alfalfa Hay	6.11	5.50	20.75
Barley Silage	28.84	7.81	29.47
Energy Booster 100®	0.21	0.20	0.75
Ground Barley	5.68	5.00	18.87
Ground Corn	2.52	2.22	8.38
Peas	1.06	0.96	3.64
Canola Meal	1.07	0.96	3.64
Soybean Meal	1.18	1.06	4.00
Corn Gluten Meal (60%)	0.27	0.25	0.94
Flax Seed	1.07	1.00	3.77
Corn Distillers	0.64	0.58	2.19
U of S premix	0.34	0.34	1.28
Molasses Cane	0.21	0.15	0.57
Biotin	0.01	0.01	0.04
R-Choline	0.06	0.06	0.22
PotMagSulfate	0.02	0.02	0.09
Sodium Bicarb	0.15	0.15	0.55
Limestone Ground	0.16	0.15	0.58
Niacin 6 g	0.01	0.01	0.02
Santoquin	0.003	0.003	0.01
Salt White	0.06	0.06	0.24
Water	5.00	0.01	0.02

<u>Formulated for:</u> Lactation: 3rd Days in milk: 120 Milk production: 40 kg/day Milk fat: 3.88%

Diet specs:

As fed total: 54.7 kg Total dry matter intake: 26.5 kg Metabolizable energy: 107.0% Metabolizable protein: 100.8%

Additional Resources

SaskFlax: https://www.saskflax.com/

Feedipedia:

Flaxseed: https://www.feedipedia.org/node/36

Flaxseed meal: https://www.feedipedia.org/node/735

Conclusions

- Flaxseed is an excellent source of omega-3 fatty acids and lignans, two important bioactive compounds
- * As a feedstuff, it provides essential amino acids, high protein, fat, and fibre
- Can help to improve reproductive and immune function in cattle
- Easily incorporated into the dairy cow diet as milled flaxseed or flaxseed meal
- * Room in the food market for value-added products such as milk fortified with lignans and omega-3 fatty acids

References and Sources

Pictures:

Slide 1:https://static.wixstatic.com/media/af29f8_b2ffa1b202c14c95a9183434bebb0083~mv2.jpg

Slide 2:<u>https://www.alltech.com/sites/default/files/styles/featured_article/public/2017-12/Alltech.com-dairy-homepage.png?itok=B1bpbwqu</u> Slide 3:https://ak2.picdn.net/shutterstock/videos/10567352/thumb/1.jpg

Slide 9:<u>https://c8.alamy.com/comp/HT50PP/small-calf-standing-next-to-the-mother-cow-in-the-barn-holstein-cattle-HT50PP.jpg</u>

Information:

CANOLA MEAL Feed Industry Guide 2009. [Online] Available: www.canolacouncil.org [2019 Jan. 20].

- Chikara, S., Lindsey, K., Dhillon, H., Mamidi, S., Kittilson, J., Christofidou-Solomidou, M., and Reindl, K.M. 2017. Enterolactone Induces G1 phase Cell Cycle Arrest in Nonsmall Cell Lung Cancer Cells by Downregulating Cyclins and Cyclin-dependent Kinases. Nutr. Cancer **69**: 652–662. doi:10.1080/01635581.2017.1296169.
- D'Eliseo, D., and Velotti, F. 2016. Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy. J. Clin. Med. 5: 15. doi:10.3390/jcm5020015.
- Fetter, M.E. 2017. EFFECTS OF AN EXTRUDED FLAXSEED SUPPLEMENT ON TRANSITION COW IMMUNE FUNCTION AND EFFECTS OF A METHANE INHIBITOR ON TRANSITION COW OVARIAN ACTIVITY. Penn State University. [Online] Available: https://etda.libraries.psu.edu/catalog/13706mef5319 [2019 Jan. 20].
- Herchi, W., Al Hujaili, A.D., Sakouhi, F., Sebei, K., Trabelsi, H., Kallel, H., and Boukhchina, S. 2014. Flaxseed Hull: Chemical Composition and Antioxidant Activity during Development. J. Oleo Sci. 63: 681–689. doi:10.5650/jos.ess14006.
- Heuzé V., Tran G., Kaushik S., 2017. Soybean meal. Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. https://www.feedipedia.org/node/674 Last updated on January 13, 2017, 15:45
- Lardy, G., Anderson, V., and Maddock, T. 2016. Using Flax in Beef and Dairy Cattle Diets. [Online] Available: https://www.ag.ndsu.edu/publications/livestock/using-flax-in-beef-and-dairy-cattle-diets/as1283.pdf [2019 Jan. 20].
- Morris, D.H. 2007. Flax A Health and Nutrition Primer | Flax Council Of Canada. [Online] Available: https://flaxcouncil.ca/resources/nutrition/technical-nutrition-information/flax-a-health-and-nutrition-primer/ [2019 Jan. 13].
- Shim, Y.Y., Gui, B., Arnison, P.G., Wang, Y., and Reaney, M.J.T. 2014. Flaxseed (Linum usitatissimum L.) bioactive compounds and peptide nomenclature: A review. Trends Food Sci. Technol. **38**: 5–20. Elsevier. doi:10.1016/J.TIFS.2014.03.011.
- Stark, A.H., Crawford, M.A., and Reifen, R. 2008. Update on alpha-linolenic acid. Nutr. Rev. 66: 326–332. Oxford University Press. doi:10.1111/j.1753-4887.2008.00040.x.
- Ulfina, G.G., Kimothi, S.P., Oberoi, P.S., Baithalu, R.K., Kumaresan, A., Mohanty, T.K., Imtiwati, P., and Dang, A.K. 2015. Modulation of postpartum reproductive performance in dairy cows through supplementation of long- or short-chain fatty acids during transition period. J. Anim. Physiol. Anim. Nutr. (Berl). 99: 1056–1064. John Wiley & Sons, Ltd (10.1111). doi:10.1111/jpn.12304.
- Zachut, M., Arieli, A., Lehrer, H., Livshitz, L., Yakoby, S., and Moallem, U. 2010. Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue, and milk fat. J. Dairy Sci. 93: 5877–5889. doi:10.3168/jds.2010-3427.