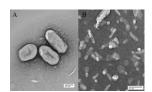
Better treatment option for bovine respiratory disease (BRD)


Jian Yang
Associate Professor of Pharmacy
Drug Discovery and Development Research Group
College of Pharmacy and Nutrition
University of Saskatchewan
Email: jian.yang@usask.ca

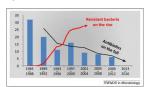
Bovine respiratory disease (BRD)

- \bullet Most prevalent infectious disease in dairy and beef cattle
- Most prevalent within the first weeks of arrival to the feedlot
 Fever, breathing problems, nasal discharge, etc.
- Economic loss: \$US 600-750 millions (North America)
- Some feedlots: 65-80% of sickness and 45-75% deaths
- Major risk factors
 - Environmental factors such as weather and shipping
 - Bacteria
 - Viruses

Major bacterial pathogens of BRD in Canada

- Mannheimia haemolytica
- Pasteurella multocida
- Haemophilus somni

S. Ayalew et al. (2013). Clinical and Vaccine Immunology, 20, 191-196.


Preconditioning and metaphylactic treatment

- Preconditioning
 - Vaccination
 - Weaning
 - Bunk feeding
- Metaphylactic (control) treatment
 - Tulathromycin (Draxxin)

Concern of antibiotic usage

 New regulation in Canada: Veterinary prescription required to purchase any livestock antibiotic from December 2018

T.F. Schäberle and I.M. Hack (2014). Trends in Microbiology, 22, 165-167

Future directions

- Alternative therapies
 - Vaccination
 - Probiotics
 - Phytomedicine (prevention and control of BRD)
- Combination therapies
 - Reduce dosage of antibiotics (delay and/or eliminate drug resistance development)
- Novel antibiotics
 - Drug repositioning
 - Novel hybrid drugs

Phytomedicine

- Widely used in Asian countries such as China
- Concerns:
 - Does it work?
 - Active ingredients?
 - How to decide dose?
 - Is it safe?

Folium isatidis

Phytochemicals against major bacterial pathogens of BRD and BM

MIC (µg/mL)					
enzyl isothiocyanate	cinnamaldehyde	eugenal	gallic acid	quercetin	tannic acid
2.5	125	250	500		500
5.6	62.5	250		12.5	
25	250	500			250
25	125	500	250		250
000	500	500			
	500	1000			
50	500	1000			
25	125	500	-		
50	250	1000			
00	500	1000	-		
00	500	1000			
000	500		-		
00	0	500	0 500 -	0 500	0 500

Gallic acid and tulathromycin (MICs)

	Gallic acid (μg/mL)	Tulathromycin (μg/mL)
M. haemolytica	250	0.31
P. multocida	500	0.31

Strong additive effect between tulathromycin and gallic acid (inhibition of growth)

(h-8)	mL) (0.16 μg/mL)	& Tulathromycin
M. haemolytica 8%	37%	81%
P. multocida 5%	77%	91%

Bacterial resistance generated from preexposure Tulathromycin (µg/mL)

	1G	2G	3G
M. haemolytica	0.31	0.62	1.25
P. multocida	0.31	0.31	0.31

Gallic acid (µg/mL)

	1G	2G	3G
M. haemolytica	250	250	250
P. multocida	250	250	500

Inhibition of mixture of *M. haemolytica* and *P. multocida*

	MIC
Gallic acid	500 μg/mL
Tulathromycin	0.31 μg/mL
Gallic acid & Tulathromycin	500 μg/mL + 0.16 μg/mL

Future research in our laboratories

- Screen and database construction of phytochemicals against clinical BRD and BM bacterial strains in Saskatchewan
- Evaluate the toxicity of phytochemicals (safety profiles)
- Develop novel combination therapies
- Optimize hybrid drugs

Acknowledgements

- Government of Saskatchewan: ADF grant SaskMilk
- MITACS Canada
- University of Saskatchewan
- Dr. David Christensen • Dr. Murray Jelinski
- Dr. Bernard Laarveld
- Dr. Christopher Luby
- Dr. Tim A. McAllister
- Dr. Ericsson Nathan • Dr. Cheryl Waldner
- Saskmilk Jack Ford Leonard Blocka

Saskatchewan 🙎