

How fast can the rumen adapt to concentrate?

Brittney L. Schurmann, Matthew E. Walpole, Pawel Górka and Gregory B. Penner

Challenges with Transition Dairy Cows

High risk for infectious, metabolic, and digestive

disorders

- Energy demand
- Social structure
- Diet
- Feed intake

Courtesy of Jared De Jong

Voluntary Feed Withdrawal in Transition Dairy Cattle

- ON MultiP
 OVR MultiP
 RES MultiP
 OCON PrimiP
 OVR PrimiP
 RES PrimiP
 - Average depression in DMI = 33%
 - 88% of reduction in last week before calving

Hayirli et al., 2002; JDS

FR Tends to Decrease SCFA Absorption

www.usask.ca

Zhang et al., 2013; JAS

Greater Severity of Feed Restriction Delays the Recovery for DMI

Return to ad libitum Feeding Induced Ruminal Acidosis

Effect of the Diet Fed <u>POST</u> on the Recovery Response

www.usask.ca

Abornoz et al., 2013; JAS

Application to the Dairy Industry

- Several gaps remain
 - Practicality of feeding a high-forage diet immediately post-partum?
 - What are the production impacts, both short- and long-term?
 - Diet change will still be required; did we defer risk for acidosis to a time when DMI is greater?

Application to the Dairy Industry

- Several gaps remain
 - Practicality of feeding a high-forage diet immediately post-partum?
 - What are the production impacts, both short- and long-term?
 - Diet change will still be required; did we defer risk for acidosis to a time when DMI is greater?

How Fast does the Ruminal Epithelium Adapt?

- 25 Holstein bull calves
- 5 treatments: DMI restricted to 2.5% BW
 - Control
 (91.5% grass hay + 8.5% mineral/vitamin supplement)
 - 3 (G3), 7 (G7), 14 (G14), or 21 d (G21) (50% grass hay + 41.5% barley grain + 8.5% mineral and vitamin supplement)

Ussing Chambers

Time on Feed and Ruminal Fermentation

Time on Feed and Ruminal Fermentation

Rate of Adaptation: Epithelial Responses

Not affected, P > 0.10

Papillae density

Effective surface area

Rate of Adaptation: SCFA transport

What Have We Learned?

- Short-term FR negatively affects nutrient absorption and barrier function of the gut
- Induces ruminal acidosis even with diets that have a moderate fermentability
- Feeding a high forage diet following FR improved recovery
- Under 'non-challenged' situations the rumen adapts rapidly

Where do we go now?

- What is the impact of the post-partum dietary energy density on;
 - DMI
 - Rumen fermentation and nutrient absorption
 - Milk and milk component yield
 - Controlled metabolism and production study (U of S)
 - On-farm validation with collaborating producers

Funding Sources

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Comments/Questions?

