

Test results for ergot and mycotoxins in feed – what to do now?

Tom Scott – Research Chair in Feed Processing Technology January 30, 2014

Mycotoxins in animal feeds

Feed Quality Acute Intoxications

Food Safety

Chronic intoxications

Sub-clinical intoxications
Economic losses
Increased costs for health care

Increased risk for infectious diseases

Undesirable use of antimicrobials

Fink-Gremmels, 2013 – Estimate losses due to mycotoxins in NA = \$5B/yr

Toxins of concern - Canada

- Ergot alkaloids
 - Grain (Rye>Triticale>Wheat) / Screenings
 - By-products (Bran, DDGS, Midds)
 - Hay (Fescue hay)
 - Silage (Fescue / Rye or Triticale green feed)
- Pre-harvest mycotoxins
 - DON (>75% of export grain in 2010-12 had measureable levels) Deoxynivalenol / Fusarium
 - Other Fusarium (nivalenol, zearalenone, T-2)
 - Fumonisin B1
- Storage mycotoxins
 - Ochratoxin A (Penicillium verrucosum)

What my test results don't tell me

- Unknowns
 - One fungal species can produce more than one toxin
 - Other toxins that may interact
 - Ergot 6 toxic alkaloids
 - More than one fungal type
 - Fusarium and/or Ergot during pre-harvest;
 - Ochratoxin A during storage
 - Masked mycotoxins (glycosinolated by plant)
- Duration of exposure or repeated exposure

Ergot – Dairy Cows

- Significant issue based on high intake and potential sources of contamination
- Recommended tolerance in grain used for feed
 - 0.1% by weight of ergot body/grain
 - Has very little relevance to type or level of alkaloids/toxins
 - 2,000 to 3,000 ppb of total alkaloids "recommended tolerable level for beef & dairy"
 - Not enforceable

EU Allowable	Diet (ug/kg; ppb)	Intake (ug/d)	Intake (ug/kg BW)
High Producing Dairy	20-24	164-201	0.25-0.31
Beef – High cereal	44-49	377-420	0.94-1.05
EFSA Journal (2012) 10(7): 2798 – pg 69			

- Test to know the type and level of alkaloids
 - Need to have good representative sample
- Don't use it!?!
 - What are you going to do with it?
- Dilute it
 - With other grain sources with no ergot
 - With other grain sources with low other mycotoxins / potential for synergistic negative effects
 - Other uncontaminated diet ingredients

Clean contaminated grain

- Seed cleaners (gravitational bed) and seed sizing
 - Moderate success, may be able to remove ergot bodies larger or smaller than seeds
 - May still be too contaminated to safely use?
- Color sorters
 - Sorting costs \$10/MT
 - Loss of ~10% of grain by weight
 - Feed grain \$150/MT = further loss of \$15/MT
 - If you can successfully sort it, it may be possible to sell it as food grade... may be too expensive to use then!

BoMill TriQ 30

- NIR Transmittance
 - 18 measurements / seed
 - 30,000 seeds / sec
 - Initially:
 - Establishes variability in seeds
 - Produces 10 fractions of equal area under the distribution curve
 - These are measured and used to set limits for production of 3 fractions

U of Sask Data

- 1 Source of wheat
 - ~2% FDK graded
- Two fractions
 - Lowest 20% CP
 - Highest 80% CP
- Outliers
 - High levels of outliers can be produced due to malpositioned seeds

Chemical detoxification

- Detoxify or inactivate mycotoxins
 - Ozone
 - Ammonia, ammonia hydroxide
 - Sodium bisulfite
 - Peroxide acids
 - Formaldehyde
 - Bases, calcium hydroxide
- Issues with
 - Safety
 - Palatability
 - Efficacy
 - REGULATORY

Decrease level of absorption

- Reduce internal exposure
 - Binders to tie up toxins so they are excreted
 - See next two slides
 - Toxin transport competition or inhibition
 - Chlorophyll; alfalfa meal; soybean metabolites; green tea polyphenols

Adsorbents: Mineral clays

- Many products available
 - Bentonites (used as a pellet binder, but require >4%)
 - Zeolites
 - Aluminosilicates
 - Hydrated sodium calcium aluminosilicate (HSCAS)
- Adsorption depends on the chemical structure
 - Capacity can vary from 0 to 87% (Devegowda & Murthy, 2005)
 - Most claims are based on in vitro data and difficult to show efficacy in live animal trials using purified toxins not naturally occurring
- Mostly effective for aflatoxins, but little efficacy for:
 - DON
 - 7earlenone
 - T-2 toxin
 - Ochratoxin A
 - Diacetoxyscirpenol
 - Fescue Toxin
- Mineral clays reduce the utilization of Mn, Zn, Mg, Cl, Cu and Na

Adsorbents: Yeast cell wall

- Yeast cell wall derived and/or modified glucomannan (Mycosorb / Alltech Inc)
- Biorgin (Brazil)
- Pros and Cons
 - Lower inclusion levels than clays (1 vs 40kg / MT)
 - Costs/MT similar, but less dilution of diet
 - Broader claims for different types of mycotoxins
- Research has promoted this for countering ergot toxicity on pasture and/or from ensiled contaminated green feed

Minimize adverse effects on animal

- Biotransform the toxin into less or none toxic forms
 - Enzymes / not specific
 - Probiotics? = Ruminants?
- Reduce negative effects of toxins
 - Reduce damage to tissue
 - Reduce oxidative stress caused by mycotoxins
 - Fortify diets with Methionine, Selenium, Vitamins
 - Antioxidant supplements (polyphenols / peptides)

